목록GAN (10)
NeuroWhAI의 잡블로그
https://github.com/JoYoungjoo/SC-FEGAN 생성 모델은 직관적으로 눈에 보이는 결과물이 나와서 그런지 정말 마법 같은 속도로 발전하네요..
저번에 따로 해봤는데 잘 안되었던 이유가 모델이 이상한건지 이미지가 커서 그랬던건지 모르겠어서 일단 모델을 새로 설계하고 32x32x3(RGB)의 작은 사이즈로 시도했습니다. 그랬더니 학습이 잘 진행되더군요. 아래는 대략 800장의 이미지를 900~1000 에포크 동안 학습한 결과물입니다. 코드는 아래와 같습니다. import os.path import numpy as np from keras.models import * from keras.layers import * from keras.optimizers import * import keras.backend as K import matplotlib.pyplot as plt K.set_image_data_format('channels_last') cla..
사실 정석의 DCGAN과는 차이(드롭아웃을 썼다거나)가 있지만 신경망 구성이야 쉽게 바꿀 수 있으니 틀만 보신다는 느낌으로 봐주세요.참고로 제가 처음부터 짠 코드는 아니고 오픈소스를 좀 수정했습니다. import numpy as np from keras.models import * from keras.layers import * from keras.optimizers import * from keras.datasets import mnist import keras.backend as K import matplotlib.pyplot as plt K.set_image_data_format('channels_last') class Gan: def __init__(self, img_data): img_size ..
※ 이 글은 '코딩셰프의 3분 딥러닝 케라스맛'이라는 책을 보고 실습한걸 기록한 글입니다. GAN으로 MNIST 이미지를 생성하는 예제입니다. 책의 코드에서 뺀 부분이 많습니다. 코드:123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134f..
※ 이 글은 '코딩셰프의 3분 딥러닝 케라스맛'이라는 책을 보고 실습한걸 기록한 글입니다. 다른 강좌나 텐서플로 책에서는 2D 이미지를 가지고 GAN를 실습했었는데 여기서는 단순한 수의 나열인 1D 데이터를 가지고 GAN를 쓰더라고요. (다음 챕터에서 2D 이미지 쓰는 것도 나오지만) 생성망의 입력 데이터는 균등분포의 랜덤한 데이터인데 출력은 정규분포로 내도록 학습시키는 예제입니다. 이번 코드는 책의 코드와 좀 많이 다를 수 있습니다. 코드:12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879..
지식 부족으로 계속 실패했었는데 그럭저럭 완성됬습니다. 인터넷 블로그의 글들과 GitHub의 소스코드들을 참고해서 만들었습니다. 코드: 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431..
저번에 했다가 실패했다고 말씀드렸었는데 이번에 어느정도 성공했습니다! (이전 글) 코드: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132#-*- coding: utf-8 -*- import tensorflow as tfimport numpy a..
역시 초짜가 건들기엔 너무 무리한것 같습니다 ㅠㅠ 생성기 학습이 잘 안되네요... 판별기에 FC를 넣어서 그런가 아니면 속도좀 올린다고 conv 계층을 두개나 줄여서 그런건지. 코드: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101..
※ 이 글은 '골빈해커의 3분 딥러닝 텐서플로맛'이라는 책을 보고 실습한걸 기록한 글입니다. 넵 이전 예제에 이어서 또 GAN 입니다. 미리 스포(?) 해드리자면 이번 예제는 제가 이해를 덜했습니다... ㅠ 코드: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96..
※ 이 글은 '골빈해커의 3분 딥러닝 텐서플로맛'이라는 책을 보고 실습한걸 기록한 글입니다. GAN(Generative Adversarial Networks)라는 신경망 구조를 이용해서 생성기와 판별기의 경쟁으로 생성기가 사실적인 이미지를 생성하도록 학습시킬 수 있습니다. 이 예제에서는 생성기가 노이즈 입력을 받아 MNIST 이미지와 비슷한 이미지를 생성하도록 하는게 목표입니다. 코드: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 ..