목록autoencoder (2)
NeuroWhAI의 잡블로그
※ 이 글은 '코딩셰프의 3분 딥러닝 케라스맛'이라는 책을 보고 실습한걸 기록한 글입니다. 입력과 똑같은 출력을 내도록 학습하면서 데이터의 특징을 스스로 압축(추출)하는 오토인코더로 MNIST를 학습시켜 보았습니다. 아직 오토인코더 파트의 반만 보았지만 이 책에서도 오토인코더로 얻은 특징을 실제로 사용하는 예시는 없는 것 같습니다 ㅠㅠ 코드: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103from..
이번 챕터는 뭔가 허무한 느낌이 있네요 ㅠㅠ 오토인코더 구현하고 끝이라니... 추출한 특징을 쓰는 것까지 했으면 좋았을 텐데 아쉽네요. (기초적인) 오토인코더는 입력 X와 출력 Y가 있을때 출력 Y를 X와 똑같이 만드는 방법으로 특징을 추출한다고 합니다. 단, 히든 레이어를 입력 레이어의 뉴런 개수보다 작게 배치함으로써 데이터를 압축하게 됩니다. (오히려 더 많이 배치하고 어떠한 제한을 걸어서 특징을 추출하기도 한답니다.) 코드: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55..